If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+4x-19=0
a = 12; b = 4; c = -19;
Δ = b2-4ac
Δ = 42-4·12·(-19)
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{58}}{2*12}=\frac{-4-4\sqrt{58}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{58}}{2*12}=\frac{-4+4\sqrt{58}}{24} $
| 180=(3x)+(-57+4x)+(x-3) | | 180=(-1-7x)+(-5x-9)+(-4x-2) | | +5x-3x-5+6=+4x-3x+2-3 | | 180=(2x)+(-49+6x)+(3x-35) | | 3d+d=8 | | 5x+(-24)=-6 | | 180=70+(5x+3x) | | 9j-5j+2j=18 | | 17b+(16b)=-4 | | 5/7x-6/7=19/7 | | -7m+(-5m)-(-20m)=-16 | | 5/6y+1=1/2y+1 | | 17p-12p=20 | | -12v+(-12v)+11v=-13 | | 180=60+(8x-4)+(7x+4) | | 50+12.50n=400 | | x/10=6/3 | | 21=8x-27 | | 4t-18t=14 | | (x+2)(x-8)=4 | | 180=87+(3x+1)+(-3+2x) | | 11b-8b+b+2b-3b=3 | | -6x+1=-3(2x+1)=x | | (x=2)(x-8)=4 | | 1764/28=s | | 8t-7t=2 | | 22.5=3.2w | | x2+30=180 | | 14c-9c+c-4c=10 | | 1/3k+4-2k=-9k | | 1/3(x–12)=2/3x–6 | | 9x^2-16x-7=2x+9 |